Parameter optimization of logistic regression classifiers

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Boosting SVM Classifiers with Logistic Regression

The support vector machine classifier is a linear maximum margin classifier. It performs very well in many classification applications. Although, it could be extended to nonlinear cases by exploiting the idea of kernel, it might still suffer from the heterogeneity in the training examples. Since there are very few theories in the literature to guide us on how to choose kernel functions, the sel...

متن کامل

A NEW APPROACH FOR PARAMETER ESTIMATION IN FUZZY LOGISTIC REGRESSION

Logistic regression analysis is used to model categorical dependent variable. It is usually used in social sciences and clinical research. Human thoughts and disease diagnosis in clinical research contain vagueness. This situation leads researchers to combine fuzzy set and statistical theories. Fuzzy logistic regression analysis is one of the outcomes of this combination and it is used in situa...

متن کامل

Risk and parameter convergence of logistic regression

The logistic loss is strictly convex and does not attain its infimum; consequently the solutions of logistic regression are in general off at infinity. This work provides a convergence analysis of gradient descent applied to logistic regression under no assumptions on the problem instance. Firstly, the risk is shown to converge at a rate O(ln(t)/t). Secondly, the parameter convergence is charac...

متن کامل

A-Optimality for Active Learning of Logistic Regression Classifiers

Over the last decade there has been growing interest in pool-based active learning techniques, where instead of receiving an i.i.d. sample from a pool of unlabeled data, a learner may take an active role in selecting examples from the pool. Queries to an oracle (a human annotator in most applications) provide label information for the selected observations, but at a cost. The challenge is to en...

متن کامل

LAceP: Lysine Acetylation Site Prediction Using Logistic Regression Classifiers

BACKGROUND Lysine acetylation is a crucial type of protein post-translational modification, which is involved in many important cellular processes and serious diseases. However, identification of protein acetylated sites through traditional experiment methods is time-consuming and laborious. Those methods are not suitable to identify a large number of acetylated sites quickly. Therefore, comput...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: BMC Neuroscience

سال: 2013

ISSN: 1471-2202

DOI: 10.1186/1471-2202-14-s1-p62